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         Abstract 

Social media platforms (SMPs) leverage algorithmic filtering (AF) as a means of selecting 
the content that constitutes a user’s feed with the aim of maximizing their rewards.  Se- 
lectively choosing the contents to be shown on the user’s feed may yield a certain extent of 
influence, either minor or major, on the user’s decision-making, compared to what it would 
have been under a natural/fair content selection. As we have witnessed over the past decade, 
algorithmic filtering can cause detrimental side effects, ranging from biasing individual 
decisions to shaping those of society as a whole, for example, diverting users’ attention from 
whether to get the COVID-19 vaccine or inducing the public to choose a presidential 
candidate. The government’s constant attempts to regulate the adverse effects of AF are often 
complicated, due to bureaucracy, legal affairs, and financial considerations. On the other 
hand SMPs seek to monitor their own algorithmic activities to avoid being fined for 
exceeding the allowable threshold. In this paper, we mathematically formalize this 
framework and utilize it to construct a data-driven statistical auditing procedure to regulate 
AF from deflecting users’ beliefs over time, along with sample complexity guaran- tees. 
This state-of-the-art algorithm can be used either by authorities acting as external regulators 
or by SMPs for self-auditing. 

Keywords: Auditing, social media platforms, algorithmic filtering, distributional testing, 
testing Markov chains. 

 

1. Introduction 

Social media platforms (SMPs), e.g., Google, Facebook, and Twitter, are increasingly be- 

coming the prevailing, most easily accessible, and most popular platforms for individual 

media consumption across the Western world (Mitchell et al., 2016). Indeed, media plat- 

forms act as intermediaries between users and the wealth of information collected from their 

friends, news, opinion leaders, celebrities, politicians and advertisers. So pervasive and 

eclectic is the stream of information content collected for each user at any given time that it 

compels social networks to filter out all but the most relevant information, display it in the 

user’s news feed, and its order of appearance. To that end, in the last decade, social 
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platforms have been adopted various algorithmic filtering (AF) methods (Caplan, 2018) to 

select and sort collections of contents to be shown on their user’s feed. 

Notwithstanding the potential of AF to provide users with a richer, more diverse, and 

more engaging experience, over the past two decades, these methods have been abused by 

social network platforms to selectively filter user feeds in an effort to maximize their returns 

(including revenue, user accumulation, popularity gain, etc.). This phenomenon has 

brought about harmful side effects (DeVito et al., 2017; Bozdag, 2013). For example, an 

artificial comment ranking that encourages over-representation of one side’s opinion or 

polarization of opinions (Siersdorfer et al., 2014), has sow hatred between groups (Lee, 

2016)). Similarly, the prioritization of a specific topic contributes to the dissemination of 

deliberately disregarded fake news (Lewis and Marwick, 2017; Chesney and Citron, 2019; 

Damian et al., 2019; Pariser, 2011). Disseminating fake news may sway the presidential 

election results (Blake, 2018). Advertisements that promote products based on erroneous 

claims regarding the user’s interests (Speicher et al., 2018; Sweeney, 2013), leading to some 

information being more (or less) visible along with many others. Intensive dietary recom- 

mendations may cause users to change their own diet (Chau et al., 2018; Jane et al., 2018), 

etc. 

The foregoing examples, among many others, embody the potentially damaging fact that 

subjectively filtering the content to be shown on the user’s feed might not overlap with the 

individual user’s or the society’s good as a whole, resulting in widespread adverse impacts 

on both individuals and society (Pariser, 2011). This, in turn, heavily impacts users’ 

learning, shapes their thinking and decisions, and ultimately influences how they behave as 

individuals or as a whole society. 

These negative influences have led to a number of calls for regulatory action by the 

authorities; however, their increasing enforcement attempts encounter multiple hurdles, 

such as, legal barriers, cumbersome and entangled bureaucracy, high human resource costs, 

which usually ends with no concrete results (Brannon, 2019; Klonick, 2017; Berghel, 2017). 

The legal difficulties are mainly driven by the concern that regulations might limit free 

speech (Klonick, 2017; Brannon, 2019), infringe on privacy by requiring content disclosure, 

subjectively define of what is right or wrong media behaviour (Obar and Wildman, 2015), 

undermine innovation or suppress jobs and revenues (e.g. through advertising restrictions). 

Meanwhile, the increasing enforcement of regulations that aims at fining violations en- 

courages the platforms to use self-regulatory methods to prevent unintentional internal 

activities and avoid penalties (Medzini, 2021). Among others, Twitter suspends tens of 

thousands accounts suspected of being involved in promoting conspiracy theories (News, 

January 2021). Facebook has set up an independent internal team named “Oversight Board” 

to foster freedom of expression by making principled, independent decisions about contents 

(Board, March 2020); YouTube has removed videos urging violence (Independent, January 

2021). 

The suggestion of the notion of an implicit agreement between users and social media 

platforms is far from being new (Manning, 1989). This notion draws from a general implicit 

contract theory (Koszegi, 2014), which economists use to explain behaviors that are observed 

but not justified by competitive market theory. In particular, it has been invoked to explain 

the reason for users to keep using social media despite data privacy infractions (Kruikemeier 

et al., 2020; Sarikakis and Winter, 2017; World Economic Forum, 2016). It has also 

been 
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advanced as a starting point for regulation (Quinn, 2016), since it balances the interests of 

both parties. 

As social media become increasingly popular information sources, a fundamental ques- 

tion remains: Is there a systematic and responsible way to regulate the effect of social media 

platforms on users learning and decision-making? Even though it may be possible to do so, 

due to the many issues raised above, and many other related ones, designing and reinforcing a 

regulation is still a notoriously difficult open problem (Kurbalija, 2016). Accordingly, the 

challenging quest for currently a far reaching fundamental theory for systematic regula- tory 

procedures that satisfy several social, legal, financial, and user related requirements, and its 

prospective practical ramifications, constitute the main impetus behind this paper. Motivated 

to guarantee compliance with a consumer-provider agreement, in this paper, we propose a 

data-driven statistical auditing procedure to regulate AF, which monitors ad- verse influences 

on the user learning (and thus on decision-making), while allowing real-time enforcement. 

 

1.1 Related Work 

Various attempts aim at regulating content moderation have been proposed over the last few 

years; however, all of these attempts generally focus on monitoring specific violations of the 

social platform-user agreement. Specifically, common methods for content moderation fall 

broadly into one of three categories (see, e.g., (Campbell, 2019; Mohseni et al., 2019)): 

1. Content control, which aims at tagging or removing suspicious items. However, the 

ability of AI algorithms to identify such rough items grows more slowly than the 

ability to create them (Paschen, 2019), and objectivity of human content control is 

often less trusted (Anderson and Rainie, 2017). Content control strategies include: 

drawing a line in the sand (e.g., determining whether discrimination has occurred by 

thresholding the difference between two proportions (Chouldechova, 2017)); detecting hate 

speech (e.g., using deep learning technique Jahan and Oussalah (2021); Rodr´ıguez et al. 

(2019) or NLP clustering methods Davidson et al. (2017)); or finding the origin of 

the content (e.g., reducing fake news by whitelisting news sources Berghel (2017) or 

detecting the sources that generate misleading posts R ácz  and Richey (2020)). 

2. Transparency, where users are required to provide lawful identification. This approach 

imposes a serious toll on user privacy and anonymity, while not even necessarily 

stopping unintended spread of misinformation. 

3. Punishment, where the network provider or the state impose penalties for malicious 

spreading of fake information. This extreme approach is clearly the least desirable 

from both privacy and human-rights perspectives. 

Most related to our work are (Cen and Shah, 2021) and (Cen et al., 2023). Specifically, 

in (Cen and Shah, 2021) the concept of “counterfactual regulations” was proposed and 

analyzed. Counterfactual regulations deal with regulatory statements of the form: “The 

platform should produce similar feeds for given users who are identical except for one single 

property”. The users differentiating property could be, for example, gender, religion, left or 

right wing affiliation, age, among many others. Accordingly, (Cen and Shah, 2021) proposed 

an auditing procedure to test whether a counterfactual regulation statement is 
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met or not, under a certain i.i.d. observational model. More recently, (Cen et al., 2023) 

introduced the notion of baseline/reference feed as “the content that a user would see without 

filtering”.1 Then, they studied the problem of regulating AF with respect to this baseline, and 

proposed a framework and a procedure for regulating and auditing SMPs with respect to such 

a baseline. As we explain below in detail, our paper follows some of the general ideas in 

(Cen and Shah, 2020) and (Cen and Shah, 2021), but deviates in the way the setting is 

formulated and analyzed. 

Finally, research and modeling of counterfactual regulation draw parallel ideas from 

the differential privacy literature (Dwork et al., 2006, 2014), as in the case of comparing 

outcomes under different interventions (Wasserman and Zhou, 2010). While our paper 

addresses questions similar to those studied in social learning and opinion dynamics, e.g. 

(Acemoglu et al., 2011; Molavi et al., 2018; Banerjee, 1992), it is distinct from this litera- 

ture in the sense that our research focuses on the question of how the flow of information, 

mediated by social networks, leads to undesirable biases in the way users learn and, conse- 

quently, to a detrimental change in their decision-making and ultimately in their actions. 

Furthermore, this is accomplished without the need to actually access the users’ beliefs, 

actions, or thoughts. 

 

1.2 Main Contributions 

Our main goal is to develop an auditing procedure for content moderation over social 

networks. We split this subsection into two parts: the first focuses on our conceptual 

contributions to the general area of social media regulation, while the second discusses our 

technical contributions. 

 

1.2.1 CONCEPTUAL CONTRIBUTIONS 

Unifying framework. Following the lead of (Cen and Shah, 2020) and (Cen and Shah, 

2021), we formulate a statistical unifying framework for online platform auditing. This 

framework considers the three involved parties: platform, users, and an auditor, all inter- 

acting and evolving over time (see, Figure 1). At each time point, the platform shows its 

users collections of content, known as “filtered feeds.” As each user in the platform browses 

through his own feed, he implicitly forms a belief, and ultimately modifies his actions. 

The auditor’s meta-objective is to moderate the effect of socially irresponsible externalities 

caused by the AF’s effect on user learning and decision-making, either as individuals or as a 

society. To that end, the platform supplies the auditor with anonymous data of two types: 

filtered and reference. The latter is constructed by ignoring any aspect of a platform’s fiscal 

motivation, thus representing a natural/fair filtering of content rather than a subjective form 

of filtering (see, Section 2, for a precise definition), prioritizing the users’ experience. We 

show that the auditor’s task can be formulated as a certain closeness testing problem (see, 

e.g., (Daskalakis et al., 2018b; Canonne et al., 2022)). In addition to the filtered vs. reference 

approach above, similarly to (Cen and Shah, 2021), we also study counterfactual regulations. 
 

1. The idea of a baseline feed was originally proposed in an old version of (Cen and Shah, 2021), which can 

be found in (Cen and Shah, 2020). 
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Automatic online auditing procedure.  We propose an auditing procedure that does 

not require any prior explicit regulation statement. The auditing procedure monitors any 

damaging influence on the users’ decision-making over a predefined adjustable time-frame, 

compared to what it would have been without subjective filtering of the users’ feeds, namely, 

under a natural/fair content filtering. This is accomplished by formulating a measure called 

“belief-variability”, which estimates the influence of the AF on the beliefs of all the users. 

Using this variability, we then formulate the auditor’s objective as a sequential hypothesis 

testing problem. As a binary hypothesis tester, the auditor examines whether the platform 

exceeds a tunable threshold of acceptable values of this estimated measurement of influence, 

doing so over a predefined time frame with a given confidence level. The auditor outputs 

whether or not regulation is being complied with, meaning whether public opinion is being 

biased or not. For example, this auditing procedure could easily detect the intensive promo- 

tion of a presidential candidate via posts, advertisements, the prioritization of related user 

comments, artificial adversarial users, or polarized recommendations. Finally, we propose an 

auditing procedure for deciding whether a platform complies with a given counterfactual 

regulation statement over the course of time. 

We next highlight the main differences and contributions compared to (Cen and Shah, 

2021) and (Cen et al., 2023). Specifically, both of these papers follow a “worst-case” ap- 

proach, where auditing is designed to prevent violations associated with (a hypothetical) 

“most gullible” user, i.e., the user whose decisions are most influenced by AF. The idea 

is that if this user passes regulation, then all other users will pass regulation as well. We 

instead propose a “global” approach, where we average the influence of the platform’s AF 

over a set of users. It should be clear that each approach has its own advantages and dis- 

advantages. For example, the worst-case approach might be sensitive to adversarial users; in 

real-world SMPs, where any party is free to create a user without any supervision, a set of 

adversarial users can act as more naive/gullible than the most gullible user already in 

existence, and thus fool the auditor. Also, since the most gullible user is model driven (and 

not chosen from the data) then he/she might be unrealistically “too gullible”, and then the 

auditor will announce false alarm violations excessively. Finally, the worst-case approach 

prevents all users from gradually changing their opinions. This is because, under this ap- 

proach, the auditing process will immediately result in a violation when the most gullible 

user alters its opinion slightly. As a result, all other users will not have the opportunity to 

make slow and natural changes to their opinions, as they would with our average approach. 

In some sense, the above problematic issues are less severe/relevant in our average approach. It 

should be emphasized, however, that the outcome of any approach would depend on how 

seriously the platform engages in conversations on designing the test, model family, and 

reference feeds. 

Another difference that we would like to emphasize is that the probabilistic setting con- 

sidered in our paper is different from the one in (Cen and Shah, 2021) and (Cen et al., 2023). 

Specifically, in those papers, an i.i.d. time-independent generative model was assumed for 

the filtered (and reference) feeds. This implies that feeds are statistically independent, and 

excludes violations of regulation over time. In “real-world” cases, this approach may be 

inherently challenging. Indeed, in cases where regulations must be enforced over time, the 

procedures in (Cen and Shah, 2021) and (Cen et al., 2023) must be repeated endlessly. Fur- 

thermore, this allows an “uncooperative” platform to comply with regulation at a specific 
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time when being tested, but not at any other time. In our paper, on the other hand, as an 

initial attempt and approximation to resolve the above issues, we follow a more complicated time-

dependent Markovian model. As so, our auditing procedures, analysis, and results are inherently 

different from those in the aforementioned papers. 

 

1.2.2 TECHNICAL CONTRIBUTIONS 

In addition to formulating a mathematical model for social media auditing, our paper 

contributes to the study of the closeness testing problem. The closeness testing problem have 

been extensively studied in the past few years (see, e.g., (Daskalakis et al., 2018b; Batu et al., 

2013; Chan et al., 2014; Acharya et al., 2015)), as well as its extended version, the tolerant 

closeness testing problem (e.g., Daskalakis et al. (2018b); Canonne et al. (2022)). The vanilla 

form of the later is as follows. We are given i.i.d. sample access to distributions P and Q 

over [n], and bounds ε2 > ε1 ≥ 0, and δ > 0. The task is to distinguish with probability of at 

least 1 − δ between P − Q 1 ≤ ε1 and P − Q 1 ≥ ε2, whenever P, Q satisfy one of these 

two inequalities. In our setting, samples (or, feeds) are assumed to be generated from a 

certain Markovian probabilistic model (rather than being i.i.d.). Testing Markov chains is a 

new and active area of research with a number of remarkable recent results, such as testing 

symmetric Markov chains (Daskalakis et al., 2018a), testing Ergodic Markov chains (Wolfer 

and Kontorovich, 2019, 2020) or testing irreducible Markov chains (Chan et al., 2021). In 

this paper, we construct a method to solve a generalized form of the two problems above. 

Specifically, rather than a single pair of distributions, we are given samples from multiple 

pairs (see, Levi et al. (2011) for a related testing problem) of hidden irreducible Markov 

chains, and we need to decide whether the total sum of distances between these hidden pairs 

of chains is ε1-close, or ε2-far away. Similarly to majority of the papers mentioned above, we 

focus on the case where probabilistic distance measure is l∞, with the understanding that 

other metrics can be analyzed. We propose a testing algorithm to the problem above, along 

with sample and complexity guarantees. It turns out that a major part of the analysis of our 

algorithm is related to the study of the covering time of random walks on undirected graphs 

(Chan et al., 2021). Specifically, we obtain an upper bound on the time it takes for multiple 

parallel random walks to cover each state a given number of times. Our analysis might be of 

independent interest. 

 

1.3 Notations 

For a positive integer m, we denote [m] ≡ {1, 2, . . . , m}. The underlying space in the 

paper is  , i.e., the space of all real-valued n length column vectors endowed with the 

dot p r o d√u c
Σ
t  ⟨x, y⟩ = xT y.  For p ≥ 1, The lp-norm of a vector x ∈ Rn is given 

by 

  the special cases of p = 1, ∞, the induced matrix norms can be computed or estimated by 

 A  1 = max1≤j≤n 
Σm  

|aij|, which is simply the maximum absolute column sum of the 

the matrix. e is used to denote the vector of all ones and 0 is the vector of all zeros. We 
denote by |S| the number of element in the set S. The function a : (N × N) → {{N}, {N}} 

takes a pair of elements and return set containing those two element. The function af : 

p-norm of matrix A induced by vector p-norms is defined by A p = supx/=0 
 Ax p .  In 

p 
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(N × N) → {N} takes a pair of elements and return the first element in the pair (first 

coordinate). Similarly, the function as : (N × N) → {N} takes a pair of elements and return 

the second element in the pair (first coordinate). Finally, we let ∆ be the n-dimensional 

probability simplex. 

 

2. Framework: Setup and Goal 

In this section, we formalize mathematically our framework, including the setup and goals. 

Here, we opted to keep the exposition simple and concise, by presenting only the essential 

ingredients of our model which are needed for our main results. However, we refer the 

interested reader to the appendix, where we include a detailed and consistent construction of our 

framework, with deeper discussions and motivations for our definitions and assumptions. 

 

2.1 The setup 

Consider a system with the following three parties: a SMP, a user, and an auditor, as 

illustrated in Figure 1. At each time step t ∈ N, the platform shows each user a collection 

of contents (e.g., posts, videos, photos, ads, etc.) known as filtered feeds. We denote the 

filtered feed shown to user u ∈ [U] at time t ∈ N by XF(t), and assume that it consists of 
M ∈ N pieces of contents, namely, XF(t) = {xF (t), . . . , xF (t)}, where xF (t) ∈ X denotes 

u 

a piece of content, for 1 ≤ j ≤ M. 
1,u M,u j,u 

Generally speaking, the AF mechanism is not known and should not be disclosed to the 

auditor. Nonetheless, it should be clear that for the auditor to be able to inspect the SMP, 

something about the feeds generation process must be assumed. From the auditor’s point of 

view, the platform is a sequential feeds generating system, relying on a probabilistic 

relationship of the current feed conditioned on the previous feeds. Specifically, in this paper, 

we assume that the feeds are generated at random according to a quasi-Markov homogeneous 

model; we divide the time horizon into batches, and assume that in each batch, the 

platform’s AF process is modeled as a large probabilistic state machine. One can think of 

these batches as time interval where the platform collects new data to create new successive 

feeds. 

Mathematically, let Ttotal ∈ N denote the time horizon, which determines how far into the 

past the auditor scrutinizes the platform’s behavior. Assume we have B ∈ N batches each of 

length T ∈ N, such that in batch b ∈ [B] we have a time sampling sequence b·T < t0,b < t1,b < 

· · · < tT,b ≤ (b + 1) · T. In each batch, from the auditor’s point of view, the piece of content 
F 
l,u (ti,b), at time ti,b, for l ∈ [M], is drawn from a first-order irreducible Markov chain, 

namely, P(xF (ti,b)|xF (t0,b), . . . , xF (ti—1,b)) = P(xF (ti,b)|xF (ti—1,b)), and P(xF (ti,b) = 

s2|xF (ti—1,b) = s1) , Qu,b(s1, s2), for any two possible states s1, s2 ∈ X. We denote the 

transition probability matrix by in batch b ∈ [B] by QF = [Qu,b(s1, s2)]s1,s2∈F . We assume 

further that the M Markov trajectories are i.i.d. Note that over different intervals, indexed 

by b, the filtering process could be transformed into a new state machine subjected to a 

different transition probabilities. For example, this transformation may occur over time when 

new external data incur noticeable changes in the platform’s reward. Thus, in the bth 

x 
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Figure 1: An illustration of the interaction between the platform, the user, and the auditor. 
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Reference feeds. Following (Wachter and Mittelstadt, 2019; Ghosh, 2019; Cen and Shah, 

2020; Petty, 2000), we define a reference boundary that is formed based on the users consent, and 

its location is determined by domain experts. While user u’s filtered feed XF(t) at time t is 

chosen by the platform in a certain reward-maximizing methodology, the reference feeds 

XR(t) could have been hypothetically selected by the platform if it strictly followed the 

consumer-provider agreement. These reference feeds are specific to each user u ∈ [U] and 

time t. In this scenario, the platform would construct the feed based solely on the user’s 

interests, without any subjective preferences influencing the content selection. Essentially, 

the only natural situation where the platform can filter content without introducing any 

subjective bias into the user’s decision-making process and actions is by selecting feasible 

content that maximizes the user’s benefit/reward. This approach ensures that the user’s feed 

reflects their own preferences, which may align with the platform’s benefits at times, but not 

necessarily always. Mathematically, the user’s exclusive benefit is quantified by a 

personal reward function that encompasses only the components measuring the user’s 

benefits. Similarly to the filtered feeds, we assume a Markovian generative model for the 
reference feeds, and denote by PR , [Pu,b(s1, s2)]i,j∈F the corresponding matrix transition 

probabilities in batch b ∈ [B]. In the appendix, we give examples of how the filtered and 

reference feeds are constructed by means of a certain reward function maximization, and 

elucidate the difference between the filtered and reference feeds. It should be emphasized 

that the specific reference feed construction hinted above, and described in more detail in the 

appendix, is just one possible example; our results and algorithms only require that there is 

some fixed reference feed (per user). 

“User Sentiments” 

User i 

n
x , 

n
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Counterfactual regulation. In addition to the “filtered vs. reference” approach, we will 

also analyze the following alternative auditing framework. Let S be a regulatory statement 

that an inspector (or, perhaps, the platform itself) wish to test. For example, S could be: 

“The platform should produce similar feeds, in the course of a given time horizon T, for 

users who are identical except for property P”, where P could be ethnicity, sexual 

orientation, gender, a combination of these factors, etc. Let UP ⊂ [U] × [U] be a subset of 

pairs of users that comply with P. Then, for any pair of users (i, j) ∈ UP , the inspector’s 

objective is to determine whether the platform’s filtering algorithm cause user i’s and user 

j’s beliefs and actions to be significantly different. We formulate this objective rigorously 

in the next section. We mention here that a similar approach to the above was proposed 

recently in (Cen and Shah, 2021), assuming a time-independent i.i.d. model. 

 

2.2 Auditor’s goal 

Average violation. We now define the meaning of “violation” from the auditor’s per- 

spective. Let U ⊆ [U] be a certain subset of users. We define the total filtering-variability 

metric as, 

 

Vfilter 
= 

 1  
max d 

|U| 
u∈U 

i∈F 

 

(Pu,b 

 

(i, ·), 

Q 

 

 

u,b 

 

(i, ·)) (1) 

= 
1 Σ 

max ̈ PR (i) − 

QF 
 

 
 

(i)¨ (2) 

1 
= 

|U| 

R 
u,b 

u∈U 

— Qu,b
¨
∞ , (3) 

where PR (i) , [Pu,b(i, j)]j∈F and QF (i) , [Qu,b(i, j)]j∈F . We discuss the choice of the 
u,b u,b 

above metric in the appendix. Without loss of generality, in the rest of this paper, we focus 

on the special case where U = [U]. Also, we will consider a single specific interval for 

testing, say, {t0, t1, . . . , tT} = [T], and therefore drop the dependency of the above notations 

on the batch index b. The underlying assumption here is that T is sufficiently large so as to 

allow for reliable testing, as dictated by our sample complexity guarantees, presented in the 

next section. An interesting question is to consider the case where the batch sizes are 

unknown, and then more sophisticated sequential/adaptive testing algorithms are needed. 

Testing. Following the above, from the auditor’s perspective, we define a violation event 

as the case where Vfilter is “unusually large”. Specifically, the audit’s decision task is for- 

mulated as the following hypothesis testing problem, 

H0 : Vfilter ≤ ε1 vs. H1 : Vfilter ≥ ε2, (4) 

where ε2 > ε1 ≥ 0 govern the auditing strictness. Devising successful statistical tests which 

solve (4) with high probability, guarantee that whenever the auditor decision is H0, then 

the platform honors the consumer-provider agreement, since the beliefs and actions are 

indistinguishable under the filtered and reference feeds. Conversely, rejecting H0 with high 

confidence implies that AF causes significantly different learning outcomes. Calculating 

Vfilter requires knowledge of the filtering and reference distributions; a condition rarely met 

u∈U 

i∈F 

1 

TV 
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set of tT pairs of Markovian trajectories XF(t1), XR(t1) , . . . , XF(tT), XR(tT) drawn 
Problem 1 (Auditor testing) Fix ε1, ε2 ∈ (0, 1) and δ ∈ (0, 1 ) with ε1 < ε2. G iven a 

from an unknown corresponding pair of Markov chains Qu , Pu , for each user u ∈ U, an 

0 u,b u,b ∞ 1 u,b u,b ∞ 

 

 

 

in practice. Accordingly, the auditor needs to solve (4) using only samples from these 

distributions; we assume that for t ≥ 1 the auditor observes the filtered and reference feeds 

{XF(t), XR(t)}, for all users u ∈ [U], and utilize these to test for violations. In practice, it 

might be challenging for the auditor to have both the reference and filtered feeds at hand. As 

so, it is an interesting question for future research to analyze the scenario where this full 

information is not available, e.g., only partial and perhaps quantized/noisy observations are 

given. Note that this type of hypothesis testing problem is reminiscent of the well- studied 

tolerant closeness testing problem (see, e.g., Daskalakis et al. (2018b); Canonne et al. 

(2022)). We are now in a position to state the testing problem faced by the auditor. 
 

 
u u 

F R
 u u 

(ε1, ε2, δ)-sum of pairs tolerant closeness testing algorithm outputs YES if Vfilter ≤ ε1 and 

‘NO if Vfilter ≥ ε2, with probability at least 1 − δ. 

As we mentioned earlier, the testing problem above is similar to the well-studied Markov tolerant 

closeness testing problem (e.g., Chan et al. (2021)). Nonetheless, the vanilla setting of this 

type of testing, is simpler than the one we are after, mainly because in our problem we deal 

with a sum of the distances between pairs of latent Markov chains, rather than a single 

distance, as it is in the standard setting. Finally, Figure 2 illustrates the filtered vs. reference 

testing scheme considered in this paper. 

Remark 1 (Worst-case violation) As we have mentioned in the introduction and above, 

in this paper we focus on a global approach by averaging the influence of the platform on 

the users. Here, we would like to mention that using the same techniques we develop in this 

paper, a worst-case approach, in the same vein as in (Cen and Shah, 2021), can be analyzed 

as well. Specifically, the idea in the worst-case approach is that if the platform’s influence 

on the most gullible user’s decision-making exceeds a predefined threshold, then it would 

mean a violation of the platform-user agreement. Now, within the proposed framework, we 

define this most gullible user as, 

ugullible = arg max ̈ PR − Qu,b
¨
∞ 

, 
u∈[U] 

i.e., the platform’s influence on his feed is the most significant. Intuitively, if the filtered 

feed satisfies regulation for the most gullible user, then it satisfies regulation for all other 

users whose learning is, by definition, less affected by the filtered feed, in the above sense. 

Accordingly, the auditor testing problem can be formulated as testing between 

Hworst : max ̈ PR − Q  ̈ ≤ ε1 vs. Hworst : max ̈ PR − Q  ̈ ≥ ε2. (5) 

 

 

2.3 Auxiliary definitions and lemmas 

This subsection is devoted to present several notations, definitions, and a lemma that will be 

needed to present our main results. As mentioned in the previous subsection, the problem 

u∈[U] u∈[U] 
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i 

j,1 

cov 

cov 

l 

cov 

cov cov 1,1 1 2,1 2 l,1 l 

Z 

i 

 

 

 

 
 

Figure 2: An illustration of the auditing procedure. The SMP and the uniformal filter get 

as an input the external data procedure, then output the filtered and the reference 

feeds, respectively. Both feeds are seen by the auditor, where the last outputs 

“YES” when the regulation is not violated, or “NO” otherwise. 

 

 

of closeness testing of a single pair of Markov chains was considered in, for example, (Chan 

et al., 2021); it was shown that the testing algorithm and sample complexity depend on 

the k-cover time. The former is defined as the first time that a random walk has visited every 

state of the Markov chain at least k times, while the later is the maximization of the 

expectation of this random variable over all initial states. As a natural generalization, we 

define the l-joint-k-cover time, as the expected time it takes for l ≥ 1 independent random 

walks to cover all states at least k times. In the language of our framework, an interpretation 

of this l-joint-k-cover time is the expected time it takes the platform to show all users all 

feasible contents. 

Definition 2 (l-joint-k-cover time) Let Z∞ , Z∞ , ..., Z∞ be l-independent infinite tra- 
1,1 2,1 l,1 

jectories drawn by the same Markov chain M. For t ≥ 1, let {NZj 
(t), ∀i ∈ [n]} be the 

counting distribution of states i ∈ [n] appearing in the subtrajectory Zt up to time t. For 

any k, l ∈ N, the random l-joint-k-cover time τ (k)(l; M ), is the first time when all l inde- 

pendent random walks have jointly visited every state of M at least k times, i.e., 

τ (k)(l; M ) , inf 

,

t ≥ 0 : ∀i ∈ [n], 
Σ 

N 
j 
(t) ≥ k

 
. (6) 

, 
j=1 

 

Accordingly, the l-joint-k-cover time is given by 

t(k) (l; M ) , max E 
h

τ (k)(l; M ) | Z = v , Z = v , ..., Z = v 
i 
, (7) 

 

where the coordinates of v = (v1, v2, . . . , vl) ∈ [n]l correspond to initial states. 

Throughout the paper, we will also use the notation t(k) (l; P) to refer to t(k) (l; M ), where 
cov cov 

P denotes the matrix transition probabilities of M .  For simplicity of notation, we de- 
(1) 

note tcov(M ) ≡ t (1; M ). In addition, unless we explicitly deal with two different 

External Data X  

YES/NO 

 

Filter 

 

 
Filtered 

Auditor 

SMP 

Auditing Procedure 

v∈[n]Æ 
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cov 

cov 

  

cov 

cov 
l 

cov 

1 

1 

cov mix 
l π٨ 

k 1 

 

 

 
chains, we omit the dependency of t(k) (l; M ) on M and use t(k) (l) instead. We de- 

cov cov 
note by π the stationary distribution of M , and accordingly we define the mixing time 

as tmix(M ) , min
 

t ≥ 1 : maxµ∈∆d dTV(µM t, π) ≤ 1/4
}
. Finally, we denote the minimum 

stationary probability as π = min π . Our goal is to bound t(k) (l; M ) in terms of 
٨ i∈[n]  i cov 

tcov(M ). To date, studies have focused on one of the following two separate cases: 

1. Upper bounding the expected time required to cover all n states of an irreducible 

Markov chain, k times, with a single random walk, given by t(k) (1; M ), in the terms 

of tcov(M ). Specifically, it is shown in (Chan et al., 2021) that for irreducible 

Markov chain, 

 

t(k) (1; M ) = O

  

t 

 

cov 
(M ) log n + 

k log n 
. (8) 

π٨ 

2. Upper bounding the expected time required to cover all n states of some general irre- 

ducible Markov chain, with l multiple independent random walks, given by t(1) (l; M ), 

in the terms of tcov. Many bounds, relying on different assumptions, exist in the liter- 

ature. For example, combining Theorem 3.2, Lemma 4.3, and Theorem 4.7 in (Rivera 

et al., 2023), we get that for irreducible Markov chain, 

t(1) (l; M ) = O

  

tmix(M ) ∨ 
tcov(M ) log n

  

. (9) 

 

For our case, we obtain the following bound on the t(k) (l; M ), for any k, l ≥ 1. 

Lemma 3 For any k, l ≥ 1 and irreducible Markov chains M, 

t(k) (l; M ) = O

   

t (M ) ∨ 
tcov(M ) log n

 

log n + 
k log n

 

. (10) 

 

Finally, following (Daskalakis et al., 2018a), for a length q trajectory Zq of an irreducible 

Markov chain M , and for any state i ∈ [n], we define the mapping ψ(i)(Zq) as follows: we 

look at the first k visits to state i (i.e., at times t = t1, . . . , tk with Zt = i) and write down 

the corresponding transitions in Zq, i.e., Zt+1. In other words, the mapping returns the k 

succeeding states of state i. We note that every state is visited almost surely, since M is 

an irreducible finite-state Markov chain. Therefore, the above mapping defines a proper 

probability distribution. Most importantly, as we will show later on, this distribution is 

independent across all different states and/or independent for a particular state i because of 

the Markov property. 

 

3. Main Results 

In this section, we present our main results. Specifically, in Subsection 3.1, we start by 

presenting an algorithm, along with sample complexity guarantees, for closeness testing the 

sum of distances of pairs of discrete distributions using i.i.d. samples. This in turn will 

serve as a sub-routine in the auditing procedure we propose and analyze in Subsection 3.2. 

Finally, in Subsection 3.3 we analyze the counterfactual regulation approach. 
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u=1 u=1 

∈ 
 ̃

( 

,
,

max

 
|V˜u,i—Y˜u,i| |, V

˜
u,i+Y˜u,i , 1

 

, if m > n, 

Vu,i + Yu,i, 1 

f̂ u,i u=1 i=1 

 

 

 

3.1 Warm up: Testing a family of discrete distributions 

As a warm-up, we start by generalizing the vanilla i.i.d. tolerant closeness testing problem 

(e.g., Canonne et al. (2022)), to the case where one is given a set of pairs of measurements 

drawn from a set of pairs of probability distributions, and is tasked with deciding whether the 

total sum of distances between these pairs of distributions is close or far away. This problem 

is formulated mathematically as follows. 

 

Problem 2 (Sum closeness testing) Given sample access the pairs of distributions 
(Pu, Qu) over [n], for u ∈ [U], and bounds ε2 > ε1 ≥ 0, and δ > 0, distinguish with proba- 

bility of at least 1 − δ between 
ΣU 

 Pu − Qu  1 ≤ |U| · ε1 and 
ΣU 

 Pu − Qu  1 ≥ |U| · ε2, 

whenever the distributions satisfy one of these two inequalities. 

The vanilla i.i.d. tolerant closeness testing corresponds to U = 1. As we will see in the 

following subsection, an algorithm to Problem 2 will serve as a building block to the actual 

testing problem we are after in Problem 1. We next propose a procedure solving the above 

testing problem along with sample complexity guarantees. We establish first a few notations. 

Let Su,P and Su,Q be two sets of m ∈ N samples drawn from Pu and Qu, respectively, for 

all u ∈ [U], and let SP , {S1,P , . . . , SU,P } and SQ , {S1,Q, . . . , SU,Q}. For every u ∈ U, 

let 

Vu,i and Vu,i count the number of occurrences of symbol i [n], in the first and the second 

sets of m samples (each), sampled from Pu, respectively. Similarly, we denote Yu,i and Y˜
u,i 

the corresponding samples from Qu, for every u ∈ U. As is customary in the literature of 

distributional testing (e.g., Canonne et al. (2022)), we use the “Poissonization” trick, and 

assume that the sample sizes of Pu and Qu, for every symbol i ∈ [n], are Poisson-distributed 

with mean m, namely, Vu,i, V˜
u,i ∼ Poisson (m · Pu,i) and Yu,i, Y˜

u,i ∼ Poisson (m · Qu,i), where 

Pu,i (Qu,i) is the probability of symbol i under Pu (Qu). Define, 
 

 

fu,i , 
max {

√
mn|Pu,i − Qu,i|, n(Pu,i + Qu,i), 1} , if m > 

n, 
max {m(Pu,i − Qu,i), 1} , otherwise, 

 

(11) 

where Ṽu,i , Y˜
u,i are used to estimate fu,i with f̂u,i, defined as, 

 
 

f̂ u,i , 
,, 

√
m/n 

n 
 ̃  ̃

 
 m/n 

, (12) 

 

Additionally, define Gu,i , (Vu,i − Yu,i)2 − Vu,i − Yu,i, and finally, 

 U R 

G , 
Σ Σ Gu,i 

. (13) 
 

Consider the routine IIDTESTER(SP , SQ, δ, ε1, ε2, m, n) in Algorithm 1. The constant c 

> 0 is an absolute constant determined in the course of the analysis. We have the following 

result. 

max , otherwise. 
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3/2 Um2ε2

  

x x 
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 r 
1 

ε 4 ε 

! 

2 

u=1 u=1 u=1 

1 
n 2 

u j=1 

m̄ j,u 

t=1 u j=1 

m̄ j,u 

t=1 

u u 

u∈[U] W∈{QF ,PR } 
cov δ 

Σ Σ 

u u 

 

 

 
 

Algorithm 1: Tolerant closeness tester for the i.i.d. pairs 
 

Input: U, n, m, ε1, δ, and samples SP and SQ from {(Pu, Qu)}u∈[U]. 

Set τ ←− c min  m ε2 , 
 

2 Compute G in (13). 

3 If  G < τ, then Return YES 

4 Else G ≥ τ, then Return NO 
 

 
 

Algorithm 2: Filtered vs. reference auditing procedure 
 

Input: T, n , |X |, ε1, ε1, δ, m̄ , and feeds {XR(t), XF(t)}T  , for u ∈ [U]. 
u 

Output:  YES if Vfilter ≤ ε1 / NO if Vfilter ≥ 

ε2. 

1 For i ← 1, 2 ........ , n 

2 Set SR ← ∅ and SF ← ∅ 

3 For every user u ← 1, 2 ......... , U 

u t=1 

R M j,u 
F M j,u 

4 I
f 

j=1 Ni < m̄ 
or 

j=1 Ni < m̄ 

5 Return NO 

6 Calculate SR ← 

∪M 

 

ψ
(i)

 
{xR 

 

(t)}T 

   
and SF ← ∪M 

 

ψ
(i)

 
{xF 

 

(t)}T 

7 Do SR ← SR ∪ SR and SF ← SF ∪ SF 

8 If  IIDTESTER(SR, SF, δ, ε1, ε2, m̄ , n) = NO 

9 Return NO 

10 Return YES 
 

 

Theorem 4 (Sample complexity) There exists an absolute constant c > 0 such that, 

for any 0 ≤ ε2 ≤ 1 and 0 ≤ ε1 ≤ cε2, given 

 

m = O 
n 

ε4δU 

 ε2 ε1 
+ n + n 2 

2 2 

 

n2/3 
+ 

Uε
4/3 

 

, (14) 

samples from each of {Pu }U and  {Qu}U , Algorithm 1 distinguish between 
ΣU 

 Pu − 

Qu  1 ≤ U · ε1 and 
ΣU 

Pu − Qu 1 ≥ U · ε2, with probability at least 1 − δ. 

 

3.2 Filtered vs. reference auditing 

In this subsection, we present our auditing procedure for the filtered vs. reference feeds 

approach. We denote by m (n, ε1, ε2, δ) the sample complexity of the i.i.d. tester in Algo- 

rithm 1, and assume that it satisfies the condition in Theorem 4. Let m̄ , m (n, ε1, ε2, δ/4n). 

Consider the auditing procedure in Algorithm 2. We have the following result. 

Theorem 5 (Sample complexity) Given an (ε1, ε2, δ) i.i.d. tolerant-closeness-tester for 

n state distributions with the sample complexity of m (n, ε1, ε2, δ), then we can (ε1, ε2, δ) 

testing hypothesis (4) using, 

T = O

  

max max t m̄  (M; W) log 
U

 

, (15) 

u=1 

1 n 
2 
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samples per user. 

 

Note that in step 8 of Algorithm 2, feed samples SR and SF from the Markov chains are 

supplied to the i.i.d. tester in Algorithm 1. These samples are pulled using the mapping 

ψ, and thus are guaranteed i.i.d., as mentioned right after Lemma 3. The sample condition in 

(15) guarantees that all states are visited “reasonable” number of times, jointly by all the 

M chains, and for all users. Accordingly, we can apply an i.i.d. identity tester to each state’s 

conditional distribution, and the auditing procedure return “YES” if this distribution passes 

its corresponding i.i.d. test. 

At this point we would like to mention that our auditing procedure is not required to be 

disclosed to the internal AF mechanism used by the platform, which may not consent to be 

shared. This provides also a flexibility in regulating the model with no need for adaptation 

with respect to any future modification of the internal AF. Furthermore, our procedure 

can be applied using only access to users’ observations (their feeds) in order to infer the 

influence of the platforms on their beliefs, decision-making, and ultimately on their actions, 

while having no access to their actual beliefs. It is clear that this way no further privacy 

leakage is incurred from the auditing process.2 The bound we derived on m-joint k-cover 

time in Subsection 2.3 gives a simpler sample complexity bound for the auditing procedure. 

In particular, using Lemma 3, we get that the number of samples, per user, can be bounded 

as, 

T = Oδ

  

max max 

 

tmix(W) ∨ 
tcov(W) log |X |

 

log |X | + 
m̄ log |X |

 

, (16) 
u∈[U] W∈{QF ,PR } M π٨(W) 

u  u 

where π٨(W) denotes the minimum stationary distribution of the Markov chain with tran- 

sition probability matrix W, and Oδ hides logarithmic factors in δ. 

 

3.3 Counterfactual regulation 

Above, we have focused on the “filtered vs. reference” feeds approach. However, it is clear that 

other frameworks can be formulated. Consider the following as an alternative. Let S be a 

regulatory statement that an inspector (or, perhaps, the platform itself) wish to test. For 

example, S could be: “The platform should produce similar articles for users who are 

identical except for property P”, where P could be ethnicity, sexual orientation, gender, a 

combination of these factors, etc. Let UP ⊂ V ×V be a subset of pairs of users that comply 

with P. Then, for any pair of users (i, j) ∈ UP , the inspector’s objective is to determine 

whether the platform’s filtering algorithm cause user i’s and user j’s beliefs and actions be 

significantly different. A similar approach, was studied recently in (Cen and Shah, 2021) 

under a time-independent i.i.d. model. We take into account the inherent dependency on 

the time dimension as in “real-world” applications regulations must be enforced over 

time, as explained in the introduction. Similarly to Subsection 2.2, we define the notion of 

counterfactual violation as follows. 
 

2. While data hacking remains a possibility, it would not be considered a regulatory flaw, as it could occur 

regardless of regulation. The involved parties are the platform and auditor, where the platform possesses data 

access and the auditor utilizes data for testing, thus maintaining user data privacy with sensible precautions. 
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O

    

cu P |UP | 
(i,j)∈UP 

TV i j 

|UP | 
i j 

|UP | i j ∞ 

0 1 

1  

(i,j)∈UP 

 

 

 

Definition 6 (Counterfactual total variability) Let UP ⊂ [U]×[U] be a subset of 

pairs of users that comply with P. Then, for any pair of users (i, j) ∈ UP, the total 

variability in algorithmic filtering behavior for counterfactual users is given by 

  Σ 

V̄ (S, U  ) , max d (Q (l, ·), Q (l, ·)) (17) 
 

= 
 1  Σ 

max Q (l) − Q 

(l) 

(18) 

 

 

= 
1 Σ 

¨QF − QF¨ . (19) 

Then, in the same spirit of the previous subsection, we define the investigator’s task to test 

for violations in the following sense: 

HS : V̄ 
cu(S, UP ) ≤ ε1 vs. HS : V̄ 

cu(S, UP ) ≥ ε2. (20) 

As before, the goal here is to construct good inspection procedures given only S and a black-

box access to the filtering algorithm. Note also that UP need not correspond to real users and 

could represent hypothetical users. Now, comparing (3) and (4) with (19) and (20), it is 

clear that the hypothesis test in (20) is the same as the one in (4), if each pair of filtered 

and reference distributions that correspond to some user is replaced with a pair of filtered 

distributions that correspond to a pair of users in UP . Accordingly, consider the 

counterfactual auditing procedure that appears in Algorithm 3. It is clear that the underlying 

idea in Algorithm 3 is the same as the one in Algorithm 2. The following is a direct 

consequence of Theorem 5. 

Theorem 7 (Sample complexity) Given an (ε1, ε2, δ) i.i.d. tolerant-closeness-tester for 

n-state distributions with sample complexity m(n, ε1, ε2, δ), then we can (ε1, ε2, δ) testing 

hypothesis (20) using, 
 

T = max 
(u,v)∈U 

max 
W∈{QF,QF} 

m̃ 
cov 

(M; W) log 
|UP | 

, (21) 
δ 

P u  v 

 

samples for each pair of users in UP. 

It should be mentioned that the auditing procedure requires a black-box access to the filtering 

algorithm only, and the internal filtering mechanism is oblivious to the auditor (SMPs will 

not grant auditors full access to their filtering algorithm). This in turn also implies that 

auditing procedure can work even if the filtering algorithm changes over time. Finally, as in 

the previous subsection, the bounds we derived on m-jointk-cover time in Subsection 2.3 

give simpler sample complexity bounds. Indeed, the number of samples, for each pair of 

users in UP , can be written as, 

T = Oδ

   

max max 

 

tmix(W) ∨ 
tcov(W) log |X |

 

log |X | + 
m̄ log |X |

 

. (22) 
(u,v)∈UP W∈{QF,QF} M π٨(W) 

u  v 

(i,j)∈UP 

t 

l∈F 

l∈F 1 
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≤ 
 Σ n 

≤ 
 Σ n 

u v t=1 

j=1 

m̄ j,u t=1 j=1 

m̄ j,v t=1 

i=1 fu,i 

1 u=1 i=1 u,i 

Σ Σ 

U Σ 

U Σ 

 

 

 
 

Algorithm 3: Counterfactual auditing procedure 
 

Input: T, n , |X |, ε1, ε1, δ, m̄ , and feeds {XF(t), XF(t)}T  , for every (u, v) ∈ UP . 

Output: YES if V̄ 
cu(S, UP ) ≤ ε1 / NO if V̄ 

cu(S, UP ) ≥ ε2. 

1 For i ← 1, 2 ........ , n 

2 Set S ← ∅ and S˜ ← ∅ 

3 For every pair (u, v) ∈ UP 
F M j,u 

F M j,v 

4 I
f 

j=1 Ni < m̄ 
or 

j=1 Ni < m̄ 

5 Return NO 

6 Calculate Su ← 

∪M 

 

ψ
(i)

 
{xF 

 

(t)}T 

  
and S˜

v ← 

∪M 

 

ψ
(i)

 
{xF 

 

(t)}T 

7 Do S ← S ∪ Su and S˜ ← S˜ ∪ S˜
v 

8 If IIDTESTER(S, S˜, δ, ε1, ε2, m̄ , n) = NO 

9 Return NO 

10 Return YES 
 

 

4. Proofs 

This section is devoted to the proofs of our results. 

 

4.1 Proof of Theorem 4 

In this subsection we prove Theorem 4. To this end, we start by proving a few auxiliary 

results which characterize the first and second order statistics of the count in (13). 

4.1.1 AUXILIARY RESULTS 

Lemma 8 Let δ1 ∈ (0, 1), and recall the definitions in (11)–(13). Then, there exist absolute 

constants c1, c2, c3 > 0, such that the following hold with probability at least 1 − δ1, 

h i δ m2

 ΣU 
 P  − Q 

  2 

1 

E G fˆu,i, u ∈ [U], i ∈ [n] ≥ 

 

 

u=1 u 

ΣU Σn 
 

 

u 1 

, (23) 

E 
h 
G fˆu,i, u ∈ [U], i ∈ [n]

i 
c2 m2 (Pu,i − Qu,i)

2 

δ  f 

 

, (24) 

and 

1 
u=1 i=1 

u,i 

 

Var 

h 
G fˆu,i, u ∈ [U], i ∈ [n]

i 
c3 Var [Gu,i] 

 
  

δ f 2 

 

. (25) 

Proof [Proof of Lemma 8] By standard properties of the Poisson distribution, the random 

variables in the definition of Gu,i are statistically independent. Therefore, 

E[Gu,i] = E[(Vu,i − Yu,i)2 − Vu,i − Yu,i] 

and 

u=1 c1 
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Σ Σ 

U 

m
 Σ Σ 

Σ Σ 

m
 Σ 

Σ 

u,i u,i 

u=1 i=1 
fu,i n 

= 
Σ Σ E [Gu,i] 

. (29) 

U 

u=1 i=1 

n 

fu,i 

fu,i 

U n 2 2 

f̂ u,i 

"
Σ U 

  

U 

 

 

 

= E[V 2 ] − 2E[Vu,i]E[Yu,i] + E[Y 2 ] − E[Vu,i] − E[Yu,i] 

= (mPu,i)
2 + mPu,i − 2m2Pu,iQu,i + (mQu,i)

2 + mQu,i − m2Pu,i − mQu,i 

= (mPu,i)
2 − 2m2Pu,iQu,i + (mQu,i)

2 = m2(Pu,i − Qu,i)
2 

= m2 |Pu,i − Qu,i|
2 

. (26) 

Hence, Gu,i is an unbiased estimator of m2|Pu,i − Qu,i|2. Similarly, 

Var(Gu,i) = Var[(Vu,i − Yu,i)2 − Vu,i − Yu,i] 

= E[((Vu,i − Yu,i)2 − Vu,i − Yu,i)2] − E[((Vu,i − Yu,i)2 − Vu,i − Yu,i)]2 

= E[((Vu,i − Yu,i)4 − 2(Vu,i − Yu,i)3 + (Vu,i − Yu,i)2] 

— E[((Vu,i − Yu,i)2 − Vu,i − Yu,i)]2 

= 4m3(Pu,i − Qu,i)2(Pu,i + Qu,i) + 2m2(Pu,i + Qu,i). (27) 

Next, using the fact that Gu,i and fˆu,i are independent, by the linearity of the expectation, 
we obtain that the conditional expectation of G is, 

E 
h 
G fˆu,i, u ∈ [U], i ∈ [n]

i 
=E 

Σ 

 

 

Gu,

i 

 ̂

|fˆu,i, u ∈ [U], i ∈ [n]

#  

(28) 

u=1 i=1 
fˆu,i 

Similarly, the conditional variance of G is, 

 

Var 

h 
G fˆu,i, u ∈ [U], i ∈ [n]

i  

= Var 

"
ΣU Σ 

 

Gu,

i 
 

 ̂

|fˆu,i, u ∈ [U], i ∈ [n]

#  

(30) 

= 
Var [Gu,i] 

. (31) 
fˆ2 

u=1 i=1 u,i 

Combining (26) and (29) we get, 
 

E 
h 
G fˆu,i, u ∈ [U], i ∈ [n]

i 
= 
Σ Σ E [Gu,i] 

 
 

 ̂

 

(32) 

= 
Σ Σ m (Pu,i − Qu,i)   

(33) 
 

 

2 U 
u=1 

 
n 
i=
1 

 

|Pu,i 

 

— Qu,i |
 2 

≥ 
U 
u=1 

n 
i=
1 

f̂ u,i 

(34) 

2 U 
u=1 

2 

 Pu − Qu  1 
≥ 

U 
u=1 

n 
i=
1 

f̂ u,i 

, (35) 

u=1 i=1 
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i=1 i=1 

n 

Σ 

√
b 

f 

f ≤ 

n 
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i 

f 

i  i=1  ≥ 

u,i fu,i 

u,i 2 
u,i 

i=1 fu,i 

≤ 
c2 Σ Σ m (Pu,i − Qu,i)  

. (42) 

δ1 
2 
u,i 

Σ Σ 

i=1 

u=1 i=1 

 

 

 

where the first inequality follows from the following fact that for any sequence of real-valued 

numbers {ai}n and positive real-valued numbers {bi}
n 

, we have, 

Σ a2 (
Σn 

|ai|) 

 

and the last inequality follows by applying Cauchy-Schwarz to, 
n n  √  

Σ 
|ai| = 

Σ  bi |ai| 
. (37) 

i=1 i=1 i 

Next, Lemma 2.5 in (Canonne et al., 2022) states that there exist absolute constants 

c1, c2, c3 > 0 such that, for every u ∈ [U], i ∈ [n], we have E[fˆu,i] ≤ c1fu,i, E[fˆ—1] ≤  c2  , and 

E[fˆ—2] ≤  c3  . Moreover, by definition, the random random variables fˆu,i are non-negative, 

and thus, applying by Markov’s inequality, we obtain that, 

 ̂  1 
E 

h
fˆ 

i 
, (38) 

u,i 
δ 

u,i 

i=1 
1 

i=1 

with probability at least 1 − δ1, for any u ∈ [U]. Combined with Lemma 2.5 in (Canonne 

et al., 2022), this means that, with probability at least 1 − δ1, 

h i δ m2

 ΣU 
 P  − Q 

  2 

1 

E G fˆu,i, u ∈ [U], i ∈ [n] ≥ 
u=1 u 

ΣU Σn 
 

u 1 

. (39) 

Next,  applying  Markov’s  inequality  for  the  non-negative  random  variable 

E G fˆu,i, u ∈ [U], i ∈ [n] , along with Lemma 2.5 in (Canonne et al., 2022), we ob- 

tain with probability at least 1 − δ1, 

E 
h 

G fˆ , u ∈ [U], i ∈ [n]
i 
≤ 

1 
E 

h
E 

h 
G fˆ , u ∈ [U], i ∈ [n]
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(40) 

u,i 
 

 

δ1 

= 
1 

E δ 

"
ΣU Σ 

u,i 

 

E [Gu,i] 
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u=1 i=1 
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U n 2 2 

δ1 
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Similarly, with probability at least 1 − δ1, 

fu,i 
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h 

G fˆ , u ∈ [U], i ∈ [n]
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E 

h
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G f̂  , u ∈ [U], i ∈ [n]

ii 
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δ1 
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ΣU Σ 
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(43) 
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u,i 
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c3 Σ Σ Var [Gu,i] 

. (44) 
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2 

n 

n # 

n # 

b i 
n 
i=1 b i 
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f 

u=1 1 u=1 1 . 

i=1 
 

f f 

= 
Σ Σ −  

— 

1 

Σ Σ Var [Gu,i] 
≤ 

10Um 
, (45) 

f 
1 

n 2 

 u=1 1   

2 
u,i 

2 
u,i 

fu,i 
i=1 

max { mn · |Pu,i − Qu,i| , n · (Pu,i + Qu,i) , 1} 

2 

i=1 

u=1 i=1 u=1 i=1 

 

 

 

This concludes the proof. 

 

By the union bound, we conclude that (23)–(25), hold simultaneously with probability 

at least 1 − 3δ1. We next bound the terms in the right-hand-side of (23)–(25), separately 

for m ≥ n and m ≤ n, respectively. We follow similar ideas as in (Canonne et al., 2022, 

Lemma 2.3) and (Canonne et al., 2022, Lemma 2.4). We have the following result. 

Lemma 9 For m ≥ n, the following hold, 

U n 2 

u=1 i=1 
n 2 

2 
u,i 

2 

n 
3/2 

Σ m (Pu,i − Qu,i)  
≤ 

m Pu − Qu 1 
, (46) 

and 

m2

 ΣU 
 Pu − Qu 

 ,

. m
3/2 

ΣU 
 Pu − Qu 

 m2

 ΣU 
 Pu − Qu 

  2 
 

U 
u=1 

Σn fu,i 
≥ min  1 , 

2 (Un) 2 6Un 
. 

 

(47) 

 

 

Proof [Proof of Lemma 9] We start by proving (45). From (27), we get 

U n U n 3 2 2 2 

Σ Σ Var [Gu,i] 
= 

Σ Σ 4m (Pu,i − Qu,i) (Pu,i + Qu,i) + 2m (Pu,i + Qu,i)  
(48) 

U n 3 2 2 2 
4m (Pu,i  Qu,i) (Pu,i + Qu,i) + 2m (Pu,i + 

Qu,i)  

(max {
√

mn · |Pu,i − Qu,i| , n · (Pu,i + Qu,i) , 1})2 

(49) 

U n 3 U n 2 

≤ 
Σ Σ 4m (Pu,i + Qu,i) 

+ 
Σ Σ 2m  (50) 

mn 
u=1 i=1 

10Um2 

n2 
u=1 i=1 

= , (51) 
n 

where the inequality follows by lower bounding the denominator in (49) by mn(Pu,i Qu,i)2 

for the first term in the numerator, and by n2(Pu,i + Qu,i)2 for the second term in the 

numerator. Next, we prove (46). We have, 
n 2 2 n 2 2 

Σ m (Pu,i − Qu,i)  
= 

Σ 
√  

m |Pu,i − Qu,i| 

 

(52) 
n 3/2 

≤ 
Σ m |Pu,i − Qu,i| (53) 
i=1 n 2 

i=1 

Σ 
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2U 
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i 

min u=1 

2U 
1 , 

G fu,i, u ∈ [U], i ∈ [n] ≤ 
δ 

. (60) 
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1 

 

 

 

= 

 

Finally, we prove (47). Note that, 

 

n 2 

. (54) 

 

2 U 
u=1 

2 

 Pu − Qu  1 
2 U 

u=1 

2 

 Pu − Qu  1 U n 
= 

U n √  

Σ
u=1 

Σ
i=1 fu,i 

Σ
u=1 

Σ
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√
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(55) 
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(56) 

mn · 
ΣU 

 Pu − Qu  1 + 2Un + Un 

,

. m
3/2 

ΣU Pu − Qu 
m2

 ΣU 
 Pu − Qu 

  2 
 

 

(57) 

where the first inequality follows by the trivial bound max(a, b) ≤ a + b, for any two 

non-negative numbers a and b. 

 

Applying Lemma 9 on (23)–(25), we obtain the following corollary for m ≥ n. 

Corollary 10 For m ≥ n, the following hold with probability at least 1 − δ1, 

 

δ1 

,

. m
3/2 

ΣU Pu − Qu 
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G fˆu,i, u ∈ [U], i ∈ [n]
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δ1 
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n 2 

 

, (59) 

and  

h 
ˆ
 

 

i c3 10Um2 
 

 

 

Next, we move froward to the case where m ≤ n. We have the following result. 

Lemma 11 For m ≤ n, the following hold, 

n 
(Gu,i) 

24m, (61) 
f 2 

i=1 u,i 

c1 n 6Un 
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n 6Un 
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2 2 
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fu,i 

≥ . (63) 
3n 

Proof [Proof of Lemma 11] As before, we start by proving (61). We have, 
n n 3 2 2 2 

Σ Var (Gu,i) 
= 

Σ 4m (Pu,i − Qu,i) (Pu,i + Qu,i) + 2m (Pu,i + 
Qu,i)  

(64) 
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2 
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2 2 2 
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(65) 

i=1 n 3 2 2 2 2  2 
Σ 4m (Pu,i − Qu,i) (Pu,i + Qu,i) + 4m (Pu,i − Qu,i) + 8m Qu,i 

 

   
 

 
n 3 2 n 2 2 
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n 2  2 

+ 
Σ 

n 
8m Qu,i 
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1} 

(68) 
n 

≤ 8m  Pu + Qu  1 +   8mQu,i (69) 

i=1 

≤ 24m, (70) 

where the first inequality follows from the fact that (a + b)2 ≤ 2(a − b)2 + 4b2, for any 

a, b ≥ 0, the second inequality follows by lower bounding the denominator by individual 

terms in the maximum, and the third inequality follows from the trivial bound |a—b| ≤ 1, 

for a, b ≥ 0. Next, for (62), we note that, 
n 2 2 n 2 2 

Σ m (Pu,i − Qu,i)  
= 
Σ  m |Pu,i − Qu,i|  (71) 
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fu,i 
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n 
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i=1 

Finally, we prove (63). We have, 
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This concludes the proof. 

. (76) 
3n 

 

 

Applying Lemma 11 on (23)–(25), we obtain the following corollary for m ≤ n. 

Corollary 12 For m ≤ n, the following hold with probability at least 1 − δ1, 
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Proof [Proof of Corollary 12] Inequalities (77)–(79) follow almost directly from Lemma 11, 

and we next focus on (80). First, note that 
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where (a) follows from the Cauchy-Schwartz inequality, and (b) is due to the monotonicity 

of the lp norm, i.e., for any vector u,  u  2 ≤  u  1. Then, 
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where in (a) we use the fact that 2ab ≤ a2 + b2, (b) follows from (a + b)2 ≤ 2(a − b)2 + 

4b2, and finally (c) is because fˆu,i ≥ 1. 
 

 

4.1.2 PROOF OF THEOREM 4. 

We start with the case where m ≥ n. By Chebyshev’s inequality, 
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ε2  1  , nε1 , for some constant C̃ > 0. Therefore, with probability at least 1 − δ 

u=1  Pu − Qu  1 ≤ ε1 correctly. 
Finally, we turn to the case m ≤ n. Using Corollary 12 and repeating the same argu- 
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(105) 

cov cov m,ν m∈[M] 

where we used the fact that E1 is determined by {Zν }m∈[M], and that by the Markov 

1 2 1 2 1 

m,1 

 

 

 

4.2 Proof of Theorem 5 

We start with the following lemma generalizes the “exponential decay lemma” in (Chan 

et al., 2021) for the case where we have m independent Markov chains. This result will be 

essential in the proof of Theorem 5. For simplicity of notations, we will sometimes suppress 

the dependency of the covering quantities on M . 

Lemma 13 (Exponential decay) For  M  independent  irreducible  Markov  chains 
∞ 
m,1 

M 
m=1 , on the same state space [n], for any k, L ∈ N, and any initial distribution q 

over [n]M, we have 

 

P
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≤ e—L. (101) 

 

Proof [Proof of Lemma 13] Consider τ (k)(M; M ) with any fixed starting states Zl,1 = vl, 

for l ∈ [M]. By Markov’s inequality, 
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Note that this inequality holds for any initial states v = (v1, . . . , vM) µ, where µ is any 

discrete distribution over [n]M. We next analyze sub-trajectories of our Markov chain of 

length ν , et(k) (M; M ). Specifically, for any 1 ≤ l ≤ L, we define El as the event that 

the set of M sub-trajectories of the Markov chains {Zlν M 
m=1 jointly cover the state 

space k times. According to (102), we have 

 

1 cov cov 

 
(k)′ 

Denote the distribution of {Z } conditioned on Ec by µr, and let τ (M) be the 
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≤ e—1, (106) 

 

property the event E2 do not depend on {Zν—1}m∈[M]. Thus, 

P (Ec ∩ Ec) = P (Ec) P (Ec | Ec) ≤ e—2. (107) 

Using the same arguments above, by induction, we can show that P
 

∩i∈[L]Ec
  

≤ e—L. Define 

E as the event that the set of M sub-trajectories of the Markov chains {ZLν M 
m=1 jointly 

cover the state space k times. Then, it is clear that ∪i∈[L]Ei ⊆ E, and thus, P (Ec) ≤ 

P ∩i∈[L]E ≤ e , which concludes the proof. 

We are now in a position to prove Theorem 5. Recall that m̄ = m(n, ε1, ε2, δ/4n) is the 

2 1 cov cov cov cov 

} 

} 

l,1 
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Σp u t s  Y¨ES for all sub-test¨s. Since Vfilter ≥ ε2 implies that there exists i٨ ∈ [n] such that 

u=1 u u 1 

with probability P(E˜i ) ≥ 1 −  δ , again due to the sample complexity guarantees for the 

1 n is 

Lemma 13, by taking L = log 4U , we get P τ ( m̄ )(M; QF) ≥ et (m̄ )(M; QF) log 4U ≤ 4U and 

s 4n 

 

 

 

sample complexity guarantee associated with Algorithm 1. For u ∈ [U] and l ∈ N we define 

the events, 
 

 

ER,u(l) , 

 

EF,u(l) , 

M 

 

m=1 

M 

 

m=1 

 

xR 

Ni (l) ≥ m̄ , ∀i ∈ [n] 

 
xF 

Ni (l) ≥ m̄ , ∀i ∈ [n] 

 

, (108) 

 

. (109) 

Furthermore, for any i ∈ [n], we define E˜
i as the event that steps 6-8 in Algorithm 2 return 

“NO”, namely, that the first m̄ succeeding samples of state i ∈ [n] in the union of the M 

Markov trajectories do not pass the i.i.d. tester in Algorithm 1. 

To establish Theorem 5, we consider the two possible cases where Vfilter ≤ ε1, and 

the complementary case where Vfilter ≥ ε2. Starting with the former, according to 

P
 
τ ( m̄  )(M; PR) ≥ e t ( m̄  )(M; PR) log 4U

 
≤  δ , for all u ∈ [U]. Thus, for a length l = T 

 
 

 

4U 
T = e log max 

 

max tm̄ (M; W) , (110) 
δ u∈[U] W∈{QF ,PR } 

cov 

u  u 

 
 δ 

we will have m̄ samples for each state in [n] with probability P (ER,u(T)) ≥ 1 − , for any 

u ∈ [U]. Similarly, P (EF,u(T)) ≥ 1 −  δ , for any u ∈ [U]. Thus, by a union bound over the 
two chains and the set all users u ∈ [U], the probability of passing the condition in step 5 

of Algorithm 2 is at least ≥ 1 − δ . Furthermore, by the sample complexity guarantee in 

Theorem 4 associated with the i.i.d. tester in Algorithm 1, we have P(E˜
i) ≤  δ , implying 

that, P(∪u∈UEc (T) ∪ Ec (T) ∪ E˜
1 . . . ∪ E˜

n) ≤ 3δ . Thus, with probability at least 1 − δ, the 

tester will return YES. 

Next, we move forward to the complementary case. Note that the only case the al- 

gorithm outputs YES is when it do not pass steps 4 and 7 in Algorithm 2 for all states, 

which means it will have enough samples for testing each state, and the i.i.d. tester out- 

U ¨PR(i٨) − QF(i٨)¨  ≥ Uε2, this guarantees that the sub-test for i٨ will return NO 
 

i.i.d. tester in Theorem 4. Thus, the probability for the whole procedure outputting YES is 

P(∩u∈[U]ER,u(T) ∩ EF,u(T) ∩ E˜c . . . ∩ E˜c ) ≤ P(E˜c ) ≤ δ/4n. 

Combining both cases above, it is clear that Algorithm 2 will output the correct answer 

with probability at least 1 − δ. 

 

4.3 Proof of Lemma 3 

To prove Lemma 3 we start with the following concentration bound on the random l-joint 

k-hitting time τ (k)(l; i), defined as the first time when a particular state i ∈ [n] is visited k 

trajectory in (108)–(109), where T is as stated in Theorem 5, i.e., 

 δ 

) 

) 
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times jointly by the l Markov chains. Mathematically, we define 
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) 
hit 

 

(l; i) , 

inf 

,

, 

 

t ≥ 0 : 
Σ

j=1 

 

N 
j 
(t) ≥ 

k  

 

, (111) 

for i ∈ [n]. The l-joint k-hitting time is then defined as 

t
(k)

(l) , max E 
h 
τ 

(k)
(l; i) Z1,1 = v1, Z2,1 = v2, ..., Zl,1 = vl

i 
. (112) 

 

Finally, we define the l-joint return time. For some state i ∈ [n], the random l-joint return 

time τret(l; i) is the first time one of the l Markov chains starting at i return to i. The 

l-joint return time is then defined as tret(l; i) = E[τret(l; i)|Z1,1 = i, Z2,1 = i, ..., Zl,1 = 

i]. It is standard result that for irreducible chains tret(1; i) = 1/πi, where π is the stationary 

distribution. 

Lemma 14 Let Z∞ , Z∞ , ..., Z∞ be l-independent infinite trajectories drawn by the same 
1,1 2,1 l,1 

Markov chain M. Then, for any i ∈ [n], 

P
 

τ (k)(l; i) ≥ t
  

≤ exp

  

− 
t  

  

, (113) 
hit 

 

for any t ≥ 0, where цi , t(1)(l) +  k . 

eцi 

Proof [Proof of Lemma 14] First, we note that by the Markov property we have 

τ (k)(l; i) = τ (1)(l; i) + (k − 1) · tret(l; i) (114) 
hit hit 

(1) k 

≤ τhit (l; i) + 
π 

(115) 

(1) k 

≤ thit (l) + 
π  

= цi, (116) 

where the last inequality holds by definition with probability one. Thus, by Markov in- 

equality we get, 

P 
h

τ (k)(l; i) ≥ eц 
i 
≤ 

1 
. (117) 

Using the same arguments as in the proof of the exponential decay result in Lemma 13, we 

can show that for any l ≥ 1, 

P 
h

τ (k)(l; i) ≥ enцi

i 
≤ e—κ. (118) 

Thus, the result follows by taking n = t/eцi. 

Using the above result we are now in a position to prove Lemma 3. First, it is clear that 
τ (k)(l) ≤ max τ (k)(l; i). Thus, by the union bound and Lemma 14, we have for any 

cov 

t ≥ 0, 
i∈[n
] 

hit 

P 
h

τ (k)(l) ≥ t
i 
≤ 

Σ 
exp

 

− 
t 

 

  

≤ n exp

 

− 
t 

   

. (119) 
цi 
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Theorem 4.7 in (Rivera et al., 2023), we have that, 

 

 

 

Therefore, we have, 

 

E[τ (k)(l)] 

= 

∞ 

P τ (k)(l) t 
0 

 

dt (120) 

∫ e mini∈[n] γi log n ∫ ∞ 

  
 

 t 
  

 

= e min цi log n + e2 min цi. (122) 
i∈[n] i∈[n] 

 
Thus, it follows that t(k) (l) = O

 
min ц log n

 
= O

 
t(1)(l) log n + k log n

 
, and there- 

fore, t(k) (l) = O
 
t(1) (l) log n + k log n

 
. Finally, combining Theorem 3.2, Lemma 4.3, and 

 

t(1) (l) = O

  

max

  

tmix, 
tcov log n

  

, (123) 

 

which concludes the proof. 

 

5. Conclusion and Future Research 

In this paper, we modeled the relationship between the three stakeholders: the platform, the 

users, and the auditor. The essence of the modeling is that from the auditor’s perspective the 

platform is a content-generating system formulated by a multidimensional first order Markov 

chain (as the fixed number of pieces of the content appearing on each feed), where at every 

time step the platform samples a new feed, according to the Markov transition- matrix 

(conditional probability). We developed an auditing method that tests whether there are 

unexpected deviations in the user’s decision-making process over a predefined time horizon. 

Unexpected deviations in the user’s decision-making process might be a result of the 

selective filtering of the contents to be shown on the user’s feed in comparison to what would 

be the users’ decision-making process under natural filtering. We proposed also an auditing 

procedure for online counterfactual regulations. 

There are several exciting directions for future work, including the following. A ma- 

jor goal going forward is to evince our auditing procedure on real social media content. 

Specifically, while our work propose a theoretical framework for SMP auditing, we left 

several fundamental questions that revolve around implementability, such as, how do we 

know if the framework is effective or useful? What are the metrics that should be used? We 

are currently investigating these kind of questions. From the technical perspective, there are 

many interesting generalizations an open questions that we plan to investigate. For example, 

studying a sequential version of the testing problems proposed in this paper are of particular 

importance. Indeed, in real-world platforms decisions must be taken as quickly as possible 

so that proper countermeasures can be taken to suppress regulation violation. Moreover, 

real-world networks are gigantic and therefore it is quite important to study the 

performance of low-complexity algorithms. Also, it is of both theoretical and practical 

importance to consider more general probabilistic models which will, for example, capture 

the dynamic relationships between users, the varying influence of individual users 

≤ 
0 

dt + n 
e mini∈[n] γi log n 

exp dt (121) 
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within the platform, and in general weaken some of the assumptions we made about the 

behaviour of users, the platform/algorithm, the social relationships and dynamics. It would 

be interesting to consider more complicated/real-world motivated generative models, such as, 

higher-order Markov chains, as well as simple structured dependencies among the M 

contents. In this paper we considered testing against a single agree upon definition for a 

reference feed. However, there is more than one “natural/fair” way to filter contents. 

Accordingly, it would be more robust and general to require closeness to the set of “nat- 

ural/fair” references, which may be very different from one another. From the conceptual 

perspective, while our paper propose several definition for the notions of “variability” and 

“violation”, there probably are other possible definitions, which take into account some 

perspectives of responsible regulation which we ignored, and are important to investigate. 

Finally, it should be clear that each approach, worst-case (Cen and Shah, 2021) or 

average, has its own advantages and disadvantages. For example, the worst-case approach 

might be sensitive to adversarial users; in real-world SMPs, where any party is free to create 

a user without any supervision, a set of adversarial users can act as more naive/gullible than 

the most gullible user already in existence, and thus fool the auditor. Also, the worst- case 

approach prevents all users from gradually changing their opinions. This is because, under 

this approach, the auditing process will immediately result in a violation when the most 

gullible user alters its opinion slightly. As a result, all other users will not have the 

opportunity to make slow and natural changes to their opinions, as they would with our 

average approach. In some sense, the above problematic issues are less severe/relevant in 

our average approach. In the average approach, the auditing procedure would not prevent the 

SMP from identifying a set O(1)-many users who, for example, are most likely to tip the 

outcome of an election and promoting one presidential candidate to them, while using the 

reference feed itself for the remaining users. However, if the set of chosen users is “large 

enough”, coupled with good-faith effort to choose and test features, this issue can be 

resolved. It is clear, nonetheless, that further research of both approaches (and perhaps 

others) is needed so as to achieve better understanding of this complicated problem of 

auditing/regulating SMPs. 
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Appendix A. Detailed Construction of Our Framework 

In this appendix, we provide more detailed discussions about the framework, definitions, and 

assumptions presented in Section 2. 

 

A.1 User-platform relationship 

Users. We describe the users learning and decision-making pipeline. As users browse 

through their feeds, they implicitly form internal beliefs about the observed contents, and 

based on those beliefs they later take actions/decisions. For example, how individuals vote 

or the products they buy are decisions that are affected by the content they see on social 
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The total history information available to user u at time t by Ht,u , Xu(l) : l ≤ t 
Accordingly, user u’s belief at time t is defined as BF (dω, ht,u) , PF(dω|HF u,t t,u = ht,u), for 

b∈Au Ω 

 

 

 

media. In addition, the decisions does not have to occur on the platform. For instance, the 

platform could show information on COVID-19, but the decision could be whether to get the 

vaccine. Let us formulate this mathematically. Let Ω be a compact metrizable set of possible 

states; this set can be finite, countably infinite, or continuums, and its elements ω ∈ Ω can be 

either scalars or vectors. At each time step t ≥ 1, each user u ∈ [U] is associated with a belief 
F 
u,t ∈ ∆(Ω), where ∆(Ω) is the simplex of probability distributions over the state space. At 

start t = 0, without loss of essential generality, we may assume that BF = Uniform(Ω), for 

all u ∈ [U]. The belief BF  is a posterior distribution on Ω conditioned on the information 
available to user u at time t. This information consists of the observed feeds {XF(l)}l≤t. 

F F 
u } 

 

a given sequence of feeds ht,u. Based on the beliefs users take decisions (or, actions); each 

user have a set of possible actions at time t ≥ 0. For user u ∈ U, let Au(t) denote a compact 

metrizable action space, and Au,i(t) ∈ Au(t) be the ith action. Also, let Uu : Ω × Au → R 

be (possibly continuous) user u’s utility function. Consequently, for any belief BF  ∈ ∆(Ω) 

and a utility function Uu we define brF (ht,u) as the set of actions that maximizes user u’s 

expected utility, i.e., 

u,t(ht,u) ,

 

a ∈ Au : a ∈ arg max 

∫ 

Uu(ω, b)Bu,t(dω, ht,u)

 

. 
F 

 

A.2 Feeds construction and auditor-platform interaction 

We now switch our focus to formalize the setup for the auditor-platform interaction. 

Platform filtering. An important component of our model is related to the question 

of how feeds are filtered ? As mentioned before, feeds are chosen by the platform using a 

black-box filtering algorithm, which is utilized to maximize a certain reward function. 

The filtering algorithm is fed with an extensive amount of inputs that the platform uses 

to filter, such as, current available contents, past feeds, users interaction history, users 

feedback (e.g., users “sentiments” which are certain complex functions of the users beliefs), the 

users social network topology, and so on. The reward function reflects the platform’s 

objective. For example, it may balance factors like advertising revenue, personalization, 

user engagement (e.g., the predicted number of clicks), content novelty, acquisition of new 

information about users, cost of operations, or a combination of these and other factors. 

We denote the platform’s reward function by RewF : XM × Pt—1 → R, where Pt—1 captures 

the inputs mentioned above, and accordingly, 

XF(t) = arg max RewF(X, Pu,t—1), (124) 
u t 

x∈FM 

where, again, Pu,t—1 captures the platform external data used for filtering. For now, we leave 

both RewF and Pt—1 unspecified. 

Filtered vs. reference feeds. The discussion in the background section about the 

regulation boundary and motivation suggests a neat and consistent formulation for the 

auditor’s objective. Following (Wachter and Mittelstadt, 2019; Ghosh, 2019; Cen et al., 

2023; Petty, 2000), we define a reference (or, competitive) boundary that is formed based on 

br 

. 
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the users consent, and its location is determined by domain experts. While user u’s filtered 

feed XF(t) at time t is chosen by the platform in a certain reward-maximizing methodology, 

On the other hand, the reference feeds XR(t) could have been hypothetically selected by the 

platform if it strictly followed the consumer-provider agreement. These reference feeds are 

specific to each user u ∈ [U] and time t. In this scenario, the platform would construct the 

feed based solely on the user’s interests, without any subjective preferences influencing the 

content selection. Essentially, the only natural situation where the platform can filter content 

without introducing any subjective bias into the user’s decision-making process and actions 

is by selecting feasible content that maximizes the user’s benefit/reward. This approach 

ensures that the user’s feed reflects their own preferences, which may align with the 

platform’s benefits at times, but not necessarily always. Mathematically, the user’s exclusive 

benefit is quantified by a personal reward function that encompasses only the components 

measuring the user’s benefits. We formulate this objective rigorously, while elucidates the 

difference between the filtered and reference feeds. 

Definition 15 (Construction of reference feeds) Suppose that the platform’s reward 

objective function can be written as following type 

RewF(X, Pi,t—1) , Rewt,per(X, Pi,t—1) + Rewt,rev(X, Pi,t—1) + Rewt,self (X, Pi,t—1), 
 

where Rewt,per is the reward gained by those feeds which are personalized to the user, Rewt,rev is 

the revenue-related reward gained by advertisements, and Rewt,self predicts the reward 

associated with the information the platform would gain from platform “selfish” aspects 

(e.g., running a social experiment on the user). Without the loss of generality, assume that 

the first two types of rewards are consistent with the consumer-provider agreement, but the 

last one is not. Then, the reference feed could be the one that maximize the contribution of 

the first two types of rewards, namely, 

RewR(X, Pi,t—1) , Rewt,per(X, Pi,t—1) + Rewt,rev(X, Pi,t—1). 

It should be emphasized here that the specific reference feed construction we described 

above is just one possible example; our results and algorithms only require that there is some 

fixed reference feed (per user). 

Auditor’s generative modeling. The AF mechanism is not known and should not be 

disclosed to the auditor. Nonetheless, it should be clear that for the auditor to be able to 

inspect the SMP, something about the feeds generation process must be assumed. In this 

paper, we assume that from the auditor’s point of view, the feeds are generated at random, 

and we denote the conditional law of the feed at time t conditioned on history feeds ht—1,u 

by PF (ht—1,u) , P(XF(t)|HF = ht—1,u), for user u. Later on, for the framework to be 

mathematical tractable, we will place additional assumptions on the family of distributions. 

Time dependent counterfactual regulations.  Above, we have focused on the “filtered 

vs. reference” feeds approach. We propose the following as an alternative. Let S be a 

regulatory statement that an inspector (or, perhaps, the platform itself) wish to test. For 

example, S could be: “The platform should produce similar feeds, in the course of a given 

time horizon T, for users who are identical except for property P”, where P could be 
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ethnicity, sexual orientation, gender, a combination of these factors, etc. Let UP ⊂ U × U 

be a subset of pairs of users that comply with P. Then, for any pair of users (i, j) ∈ UP , 

the inspector’s objective is to determine whether the platform’s filtering algorithm cause 

user i’s and user j’s beliefs and actions to be significantly different. We formulate this 

objective rigorously in the next section. We mention here that a similar approach to the 

above was proposed recently in (Cen and Shah, 2021), assuming a time-independent static model. 

Our study first focuses on constructing a regulation procedure given the first usable form, filtered 

vs. reference feeds. However, we will later reveal that a regulation procedure for the second 

form, counterfactual regulations, could be constructed using two parallel procedures of 

the first form. 

Hypothesis testing.  The auditor’s goal is to determine whether the platform upholds 

the consumer-provider agreement, and by doing so, to moderate intense influence on the user’s 

decision-making, which may be caused by observing filtered feed, compared to what would have 

been the user’s decision-making under the reference feed. With the model introduced above, the 

auditor’s task can be formulated as a hypothesis testing problem with the following two 

hypotheses: 

• The null hypothesis H0: the auditor (or self-audit) decision is that the platform 

honors the consumer-provider agreement. 

• The alternative hypothesis H1: the auditor (or self-audit) decision is to investigate the 

platform for a possible violation. 

Accordingly, relying on a certain from of data, which we will specify in the sequel, the 

auditor’s detection problem is to determine whether H0 or H1 is true. We need to specify 

what kind of “test” is considered. Given a fixed risk δ ∈ (0, 1), we expect the auditing 

procedure to find the true one with probability 1 − δ, whichever it is. We call such a 

procedure δ-correct. We consider the following notion of “frugality”, which we name batch 

setting : the auditor specifies in advance the number of samples needed for the test, and 

announce its decision just after observing the data all at once, and the sample complexity of 

the test is the smallest sample size of a δ-correct procedure. 

Auditor’s data.  For t ≥ 1 the auditor observes the filtered and reference feeds 

{XF(t), XR(t)}, for all (or a subset of) users u ∈ U, and utilize these to test for regula- 

tion violations. There are two ways to access this data without invasions to privacy. First, 

under self-regulation (currently, almost all platform are entirely self-regulated (Klonick, 

2017)), the platform obviously has access to those feeds, and therefore, there are no privacy 

issues. The second option is to provide anonymized data to the auditor. Indeed, both the 

users identities and the meaning behind the features should/can be removed since they do 

not affect regulation enforcement. Note that de-anonymization is not a real concern here because 

the anonymized datasets will not be publicly shared anyhow. Moreover, since the auditor only 

requires the numerical features of the feeds, rather their semantic interpre- tation, de-

anonymization would require unreasonable significant effort that the auditor is not willing to 

undertake. Thus, with carefully laid out but reasonable measures, the users data would 

remain private and anonymous. Finally, notice that in principle the filtered and reference feeds 

need not necessarily correspond to real users and could represent sufficiently representative 

sample of hypothetical users. 
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A.3 Formalizing the auditor’s goal 

Let {XF(t)}t≥1 and {XR(t)}t≥1 denote the sequences of user u’s filtered an reference feeds 

evolved over time, respectively. As discussed above, the users implicitly form beliefs from 

their feeds. With enough evidence, the users gain confidence, and then take actions. Ac- 

cordingly, the corresponding user u’s beliefs and actions are denoted by {BF F 
u,t }t≥1 and 

R 
u,t 

R 
u,t }t≥1, implied by the filtered and reference feeds, respectively. 

Violation. We now define the meaning of “violation” from the auditor’s perspective. Let 

T ∈ N denote the time horizon, which determines how far into the past the auditor scruti- 

nizes the platform’s behavior. Let d(· ·) : Ω × Ω → R≥0 be a probability metric 

between 

two probability measures defined over Ω. Let Ū ⊆ U be a certain subset of users (such 

representative subset of the entire set of users). Then, define the total action-variability 

metric as follows: 

V , 
1 Σ Σ 

max d brF (h )
¨
brR (h ) . (125) 

action 
T · | Ū |  

i∈ Ū  t=1 
ht,i 

i,t t,i ¨ i,t t,i 

Similarly, define the total belief-variability metric as, 

1 Σ Σ 
Vbelief , max d BF (ht,i)¨B

R (ht,i) . (126) 

Finally, recall that in Subsection A.1 we also proposed a statistical model for filtering. 

Accordingly, as we explain below, it is beneficial to define also the total filtering-variability 

metric: 

V , 
1 Σ Σ 

max d PF (h )
¨
PR (h )  . (127) 

t—1,i ¨ i,t t—1,i 
filter 

T · |Ū | 
i∈Ū  t=1 

ht−1,i 
i,t 

It is useful to note that there is an analytical relationship between the above variabilities. 

Indeed, viewing brF as a result of a probabilistic kernel that is applied on the beliefs, and 

assuming that the metric d satisfies the data processing inequality (Cover and Thomas, 

2006), it follows that Vaction ≤ Vbelief ≤ Vfilter. Now, from the auditor’s perspective, viola- 

tion could mean that action > ε > 0, for some ε > 0 which governs the regulation strictness, 

i.e., higher values of ε indicate greater strictness. Alternatively, violation can also be de- 

fined through the belief-variability, namely, Vbelief > ε > 0, for some ε > 0. 

Accordingly, depending on the auditor’s ambition, its testing/decision problem can be 

formulated as one of the following: 

H0 : Vaction ≤ ε1 vs. H1 : Vaction ≥ ε2, (128a) 

H0 : Vbelief ≤ ε1 vs. H1 : Vbelief ≥ ε2, (128b) 

H0 : Vfilter ≤ ε1 vs. H1 : Vfilter ≥ ε2, (128c) 

where ε2 > ε1 ≥ 0. Devising successful statistical tests which solve (128a) (or, (128b)) 

with high probability, guarantee that whenever the auditor decision is H0 (or, H0’), then 

, br 

{B , br 

T 
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the platform honors the consumer-provider agreement, since the beliefs and actions are 

indistinguishable under the filtered and reference feeds. Conversely, rejecting H0 (or, Hr ) 
with high confidence implies that AF causes significantly different learning outcomes. Note 

that by the data processing inequality, accepting Hrr in (128c) imply immediately that 

H0 and Hr hold as well. Note that the general form of the hypothesis testing problems 

formulated in (128) reminiscent of the well-studied tolerant closeness testing problem (see, 

e.g., Daskalakis et al. (2018b); Canonne et al. (2022)). In this paper, we focus on the 

hypothesis test in (128c). 

Testing. Solving (128c) is mathematically intractable unless we place further assumptions 

on the family of distributions that generate the feeds. In this paper, we assume the following 

quasi-Markov homogeneous model. We divide the time horizon into batches, and assume 

that in each batch, the platform filtering process is modeled as a large probabilistic state 

machine. During these batches the platform collect new data to create new successive feeds. 

From the auditor’s point of view, the platform is a rather sequentially-feeds generating 

system, making a probabilistic relationship of the current feed conditioned on the previous 

feeds, in time intervals. Under these circumstances, the auditor models problem (4) as a 

quasi-Markov homogeneous model. 

Mathematically, let Ttotal ∈ N denote the time horizon, which determines how far into the 

past the auditor scrutinizes the platform’s behavior. Assume we have B ∈ N batches each of 

length T ∈ N, such that in batch b ∈ [B] we have a time sampling sequence b·T < t0,b < t1,b < 

· · · < tT,b ≤ (b + 1) · T. In each batch, from the auditor’s point of view, the piece of content 
F 
l,u (ti,b), at time ti,b, for l ∈ [M], is drawn from a first-order irreducible Markov chain, 

namely, P(xF (ti,b)|xF (t0,b), . . . , xF (ti—1,b)) = P(xF (ti,b)|xF (ti—1,b)), and P(xF (ti,b) = 

s2|xF (ti—1,b) = s1) , Qu,b(s1, s2), for any two possible states s1, s2 ∈ X. We denote the 

transition probability matrix by in batch b ∈ [B] by QF = [Qu,b(s1, s2)]s1,s2∈F . We assume 

further that the M Markov trajectories are i.i.d. Note that over different intervals, indexed 

by b, the filtering process could be transformed into a new state machine subjected to a 

different transition probabilities. For example, this transformation may occur over time when 

new external data incur noticeable changes in the platform’s reward. Thus, in the bth batch, 

the observed feeds are, 
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(t0,b 
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) 
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l=
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M 
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l=1 

Feed 1 Feed 2 Feed T 

The above discussion is relevant to the reference feeds generation process as well; in particu- 

lar, we denote by PR , [Pu,n(s1, s2)]i,j∈F the corresponding matrix transition probabilities. 

From the auditor point of view, in terms of the reward-based platform filtering, a practi- 

cal interpretation for the above modeling is as follows. At any interval b, the platform gen- 

erates some updated Markovian transition-matrix that is subjected to an updated Markov 

chain by maximizing its reward function, i.e., 
 

F 
u,b+1 = arg 

max 
Q 

RewF(Q, Pu,b) 

s.t. ∀j ∈ X , Qi,j = 1, 

i∈F 

x 

n
x , 

n
x 

Q 
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t Σ 

 

 

 

where Pu,b captures the external data and inputs to the platform used for filtering, intended for 

user u, and was collected during the current time interval (b · T, (b + 1) · T]. Similarly, the 

reference feeds are generated by the same statistical process but by the reference-based 

rewards objective, i.e., 
 

R 
u,b+1 = arg 

max 
P 

RewR(P, Pu,b) 

s.t. ∀j ∈ X , Pi,j = 1. 

i∈F 
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